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1 | INTRODUCTION
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Abstract

The development of a transient temperature model of photovoltaic (PV) modules is
presented in this paper. Currently, there are a few steady-state temperature models
targeted at assessing and predicting the PV module temperature. One of the most
commonly used models is the Faiman thermal model. This model is derived from the
modified Hottel-Whillier-Bliss (HWB) model for flat-plate solar-thermal collector
under steady-state conditions and assumes low or no thermal mass in the modules
(i.e., short time constants such that transients are neglected, and steady-state condi-
tions are assumed). The transient extension of the Faiman model we present in this
paper introduces a thermal mass, which provides two advantages. First of all, it
improves the temperature prediction under dynamic conditions. Second, our tran-
sient extension to the Faiman model allows the accurate parametrization of the
Faiman model under dynamic conditions. We present our model and parametrization
method. Furthermore, we applied the model and parametrization method to a 1-year
data set with 5-min resolved outdoor module measurements. We demonstrate a
significant improvement in temperature prediction for the transient model, especially

under dynamic conditions.
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require an accurate module temperature prediction. These quantities

depend heavily on the standard Faiman temperature model.

The accurate determination of the operating temperature of PV mod-
ules, especially operated under outdoor conditions, is of key importance
in the field of photovoltaics. This is, among other reasons, due to the
critical dependence of the PV yield on temperature.!® Thus, module
temperature prediction attracts considerable research interests in the
recent decade.” ** Moreover, two important quantities in photovol-
taics: the Climatic Energy Rating of PV modules (CSER) according to
International Electrotechnical Commission (IEC) 61853-3 standard

series?® and the Nominal Module Operating Temperature (NMOT),2¢1”

The Faiman model is widely used as it is very simple, using linear-
ized effective heat loss, and for many applications adequate.*”>18
However, the model neglects the thermal mass of the PV module and
thus neglects transients. This makes the Faiman model, like every
other steady-state model, inaccurate under rapidly changing condi-
tions.*11720 Fyrthermore, the inability to accurately describe temper-
ature transients hampers model parametrization as measured data
must be filtered to only select those datapoints where the conditions

were sufficiently stable to assume a steady-state temperature.t®
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One way to overcome this limitation of the Faiman model is to
extend it to a transient thermal model. Various transient thermal
models have been developed.”’la'zo’26 However, these models are
generally much more complex than the Faiman model, distinguishing
between convective and radiative heat loss and applying nonlinear
heat loss terms.

In this work, we propose a simple transient extension of the Fai-
man model with only one extra parameter for the thermal mass of the
module. The model is compatible with the Faiman model such that
the transient extension may be used to obtain a parametrization for
the original steady-state model. This allows us to parameterize both
the Faiman model as well as our extension thereof, without the usual
data filtering to reject datapoints where the conditions are too
dynamic. We demonstrate that our model provides a significant
improvement in temperature prediction over the Faiman model, in
particular under dynamic conditions.

In Section 2, we briefly present the source and composition of
the dataset used in the model development and the parametrization
approach of the Faiman model. In Section 3, our proposed model and
its parametrization are introduced. We compare our transient model
with the Faiman model for all the datasets and further show the sig-
nificant improvement realized by our model when we focus only on
dynamical conditions. Finally, we summarize the key findings of our
work in Section 4.

2 | DATASOURCE AND THEORY

2.1 | Data description

The dataset used in this work was collected from a PV test facility in
Widderstall, in the south of Germany. The data set includes the mod-
ule temperature (T,,,) and weather data. The weather data consists of
the plane of array (POA) irradiance (G), wind speed (w), and rack ambi-
ent temperature (T,). The data have a temporal resolution of 5 min,
collected over the year 2015. Exploratory data analysis was con-
ducted on the dataset to filter out missing sensor data. The resulting

data set consists of 78,777 complete measurements.

2.2 | Parametrization of Faiman model
The Faiman model in its original form?” is given by the interdepen-
dence of the module temperature T, on the ambient temperature T,

given by

Tm=Ta+G/(uo+usw), (1)

where T, (K) is the module temperature, T, (K) is the ambient temper-
ature, G (W/m?) is the irradiance, w is the wind speed, and uo (W/[m?
K]) is a convective heat loss term, and u; (Ws/[m® K]) describes the

wind dependent forced convection.

Usually, the model is parameterized using linear least squares fit

of

Uo+uw=G/(Tm —Ta). (2)

According to the IEC 61853-2 standard,?® prior to the linear fit-
ting to determine the model parameters, a minimum of 10 days high
frequency measurements taken on a suitably clear day is usually
required. Furthermore, the input data are preprocessed by rejecting
certain data points to achieve steady-state conditions as much as pos-

sible. Consequently, the following filtering procedure is followed?®:

o Data points with irradiance values below 400 W/m? are rejected.

e |rradiance values fluctuating more than £10% from the maximum
to the minimum value within 10 min interval are also rejected.

e |nstantaneous windspeed data with a deviation below 0.25 m/s or
wind gusts above +200% from a 5 min running average within
10 min interval are rejected.

o After rejecting gusts and low wind speeds, all data when the 5 min
running average is less than 1 m/s or greater than 8 m/s are also

rejected.

Unfortunately, this data filtering procedure poses a strict reduc-
tion in the number of usable data points for analysis. In fact, other
researchers have clearly noted that only about 0.3% of data points are
usable after filtering.2® Furthermore, wind speed ranges with higher
point density exert more weights in the regression, leading to a lower
regression accuracy.®

As we cannot strictly follow the Faiman parametrization proce-
dure according to the IEC norm due to the low resolution of our data-
set, we parameterize the Faiman model using an equivalent form
given by

(Tm—Ta)(up +usw) =G. (3)

This equivalent form is more robust to numerical errors in case
(Ty — Ta) is small. The parameters determined from this approach as
well as the predicted temperature plots are presented in Figure 1.

Note that by applying linear least squares on Equations (2) and
(3), the parameters ug and u4 are determined such that the errors in
the right-hand side of the equations are minimized. It should be noted
that this is generally not identical to the solution where the error in

the module temperature is minimized.

2.3 | Transient model development
We propose the following differential equation for a transient temper-
ature model:

dT

Cad—tm:G—(uo-i-uiw)(Tm—Ta), (4)
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FIGURE 1 Scatter density plots for the predicted temperature

(Torea) Versus the measured temperature (Tieas). The color of the
scatter points shows the estimated density of scatter points in
logarithmic scale. (a) the Faiman model prediction for the whole
dataset. (b) Model prediction for a filtered dataset where |AT,,| > 2°C,
that is, select only those points where two subsequent temperature
measurements show a large difference.

where C, (J/[m? K]) is the area-specific thermal capacitance; that is, it
is the heat capacity per unit area, and all other parameters are as ear-
lier defined.

Under the assumption that the irradiance, wind, and ambient tem-
perature do not vary, this differential equation has an analytical solu-

tion of the form

Tm(t) =Tss — Cexp[—t(uo/Ca +u1w/Cy)], (5)

where
Tes =Ta+G/(uo +u1w), (6)
C=Te—Tm(0). 7)

Also, under steady-state conditions, Equation (5) reduces to
Equation (6), with T, = T, where T is the module temperature at
steady-state. Note that Equation (6) is the Faiman equation as in
Equation (1), with T, = Ts. Thus, a parametrization of the Faiman
model is directly obtained from our model parameters.

2.4 | Parametrization approach

We parameterize our transient model from a time series of data points
(Gi, Taj, Wi, and Ty,j) to determine the parameters, uo, uq, and C,, by
considering time intervals between consecutive data points. Conse-
quently, we employ the finite difference approach while assuming
constant conditions within an interval [t;, t; ;. 1]. A good choice for the
constant value would be the first order approximation of the value in
the center of each interval: Xios5=(Xi+Xi;1)/2, where X is
substituted with one of the quantities G, T,, w, T, and i is the time
series measurement index (i=1 ... N), and t;<t; . 1 for all i, and N is the
number of measurements in the time series. Hence, we linearize

Equation (4) to obtain Equation (8) as

PHOTOVOLTAICS I T B

Tm,i+1 - Tm,i

(8)

Givos — (Uo +U1Wiro5)(Tmisos — Tairos) = Ca—p——
i+1 — i

To compute the temperature at a specific time, we consider the
thermal history of the module by trailing back in time. Here, we simply
assume that we have a steady-state condition at t-At; minutes, where
At, is the trailing time. We numerically integrate Equation (8) up to
the desired time to get the module temperature, T,(t). The simplified

process flow is as follows:

I.) At t-At; minutes, we assume steady-state conditions, that is,
Tm(t_AtJ = Tss(t_Att)r
IIl.) We compute the temperature for the next time step (Tr,i . 1),

using
Tmir1 = Tmi+24/,[Giro5 — (Uo +U1Wiy05)(Tmi — Tajros)].  (9)

lll.). The final module temperature at time t is obtained by integrating

N time steps using Equation (9), where

N
Aty=> " At;. (10)
i=0

3 | RESULTS AND DISCUSSIONS

3.1 | Faiman model results

The ordinary least squares fitting was done using the equivalent equa-
tion of the Faiman model in Equation (3), for all the dataset, which
yielded the Faiman parameters, ug and uq as 29.66 Wm~2 K~ and
5.64 Wm~3 sK™1, respectively. These values are comparable to those
obtained by other authors in the literature.2?” The Faiman parame-
ters are subsequently used in Equation (1) to predict the module tem-
perature, and the plots are presented in Figure 1.

Figure 1a shows a scatter density plot for the measured versus
the Faiman predicted module temperature (T,). The color scale
depicts the density of points in the scatter plot (note the logarithmic
scale). Large density of points especially at low temperatures is rea-
sonably well predicted by the model. However, for these points, the
irradiance is generally low, and thus, the module temperature is close
to the ambient temperature. At higher temperatures, the scatter fans
out a bit. Nevertheless, the plot clearly depicts that even without data
filtering and other extraneous data preprocessing, the Faiman model
works fairly well. The coefficient of determination, R?, and the root-

mean-square error, RMSE, are 0.9610 and 2.19 K, respectively.
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We expect the Faiman model to be less accurate under dynamic
conditions. To show this, we filter our dataset by selecting datapoints
where the magnitude of AT, for the preceding interval is greater than
2°C (|ATy| > 2°C); that is, we select those points in the dataset where
the temperature is rapidly changing. The predicted versus the mea-
sured module temperatures for the thus filtered dataset is shown in
Figure 1b. It is clearly seen that during these dynamic moments, the
model is much less accurate with an R? value of 0.5200 and an RMSE
of 6.72 K, which is more than a factor 3 larger as compared to the
RMSE for the complete dataset. This is seen in the large scatter of
points in Figure 2b with only very few points lying on the

regression line.

3.2 | Transient model results

In the next step, we parameterize the transient model. In principle, we
can use an ordinary least squares (OLS) approach to find the coeffi-
cients C,, Ug, and u, from Equation (8). Figure 2a shows the measured

(AT neas) and predicted (ATpeq) temperature difference for subsequent
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FIGURE 2

measurements in the time series (ATy = Tmi. 1 - Tmj), Where the
parameters are obtained with OLS. However, we observe that
the variance of the residuals is not constant across the AT eas.

When non-constant variance of the residuals is observed, it indi-
cates that the variability of the errors is not consistent throughout the
data range (in ATeas)- Moreover, this condition represents a violation
of the assumption of homoscedasticity, a critical assumption in linear
regression. Consequently, such a violation can introduce bias into
parameter estimates and lead to incorrect statistical inferences.2? 3!

This problem arises from a rather unbalanced dataset where the
majority of AT, values are close to 0. To overcome this, we apply a
weighted least square (WLS) regression. The weights are obtained by
binning the AT,,/At values into 100 equally spaced bins and set
weights inversely proportional to the number of data points per bin.
The results of the WLS fit on all the dataset are shown in Figure 2b.

From the parametrization procedure in Equation (8), we obtain
the three parameters C,, ug, and u4, from the weighted least squares
fit as 19.57 k) m=2 K™% 26.31 Wm=2 K™%, and 7.93 Wm3sK™?,
respectively. The results of the Faiman parameters obtained from our

parametrization approach, as well as from the transient model and
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Scatter density plots showing the predicted (AT, eq) versus the measured (AT eas) module temperature difference from the

transient model parametrization fits using (a) OLS and (b) WLS regression. The solid line is the line of best fits or the identity line for which the
modeled and measured AT, are equal, and the color of the scatter points indicates the estimated probability density of the scatter points on a

logarithmic scale.

TABLE 1

Faiman parameters Values from an equivalent equation

Values of Faiman parameters derived from equivalent equation, transient model, and published literature.

Values from our transient model Values from literature

Uup (Wm=2 K™Y 29.66 26.31 29.27,28 32.0%
ug (Wm3sK™Y) 5.64 7.93 5.60,%8 4.51¢
— ; . . —1 . J— . . . —1 .
2 R p9508 10 g 2 M RT 9786 10 &
- RMSE=2.23. .. L - RMSE=1.63 L
£ 320} L 320} iy
= 1072 % (8 107% >
bt 1 b7 & 300+ 4 b7
=] =] =] =]
® 1073 8 = 1073 & FIGURE 3  Scatter density plots
g 1 5 g, 280 3 1 5 of the predicted temperature (Treq)
g / = g p = versus the measured temperature
260 - —4 260 . e P

(A)

260 280 300 320 340

Temperature Tmeas [K]

)]
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Temperature Tmeas [K]

(Tineas) for the transient model on all
dataset (a) for trail = O min (Faiman
equivalent) (b) trail = 15 min.
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how they compare with literature published values, are shown in
Table 1. As compared to the previous direct parametrization of the
Faiman model, we observe the new ug is slightly smaller (was 29.66
Wm™2 K1), whereas the new uy is slightly larger (was 5.64
Wm3sK™1). In any case, the exact values of these parameters are no
more important than their impact on the annual energy yield for a
specific location.?®

First, we compare the Faiman model parameterized from the tran-
sient model coefficients. In Figure 3a, we show the predicted versus
measured module temperature using this alternative parametrization
of the Faiman model. The results are nearly identical to Figure 1a. The
coefficient of determination and root mean square error are also
nearly the same (R? = 0.9598 and an RMSE = 2.23 K).

The results for the transient model are shown in Figure 3b,
where we use a trailing time of 15 min. Here, we observe a better
temperature prediction using the transient model, as compared to
the Faiman model in Figure 3a. The point cloud gets narrower with
more density of data points, which lie about the regression line. The
model accuracy improves to having an R? value of 0.9786 and RMSE
value of 1.63 K. Quantitatively, this RMSE value has been noted in
the literature to be comparable to cell-to-cell temperature within
any given module.*?” Moreover, in terms of power rating of com-
monly available PV modules, such as HIT and c-Si modules with typi-
cal temperature coefficients of about —0.3%/K and —0.5%/K,
respectively, the RMS error would translate to only 0.48% or 0.82%

uncertainty in power.
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2 3R e 07
- RMSE=6.69 o
£ 320+ 1 &
n &
g 300f 1 )2
g =
—~
2 280 1 &
z 2
& 260 R — =56

260 280 300 320 340

(A) Temperature Tmeas [K]
. [ ‘ ‘ i -2
= 340 Rr—gRa06 10 9"
- RMSE=3.75 1
£ 320t T s
<a =
£ 300 1 q
2 5
cé 280 - 1 ey
2 S
& 260 o 1072 &

260 280 300 320 340
©) Temperature Timeas [K]

FIGURE 4
(b) trail = 5 min, (c) trail = 10 min, and (d) trail = 15 min.
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Next, we evaluate the transient model performance under
dynamic conditions. Figure 4 shows plots of filtered datasets for large
transients, that is, for moments where the absolute module tempera-
ture difference is larger than 2°C (|AT,,,| > 2°C).

Figure 4a-c shows the improvement of our transient model from
its steady-state counterpart in Figure 1b. In Figure 4a, we show the
results without trailing data, which produces more or less identical
results as before in Figure 1b, while Figure 4b,c shows results for 5-,
10-, and 15-min trailing data. It is observed that with an increasing
trailing time, the model gets more accurate. Under these dynamic con-
ditions, we can reduce the RMSE from 6.69 to 3.33 K.

Similarly, in Figure 5, we show the development of the coefficient
of determination and the RMSE, as a function of the trailing time.
Figure 5a shows the results for the complete dataset and Figure 5b
for the dynamic conditions only. In both figures, we observe that the
accuracy improves rapidly up to a trailing time of about 15 min. Trail-
ing further in the past, the less the module temperature is correlated
with the current temperature. So if we integrate from a point far in
the past, then we get a better temperature estimate.

From Equation (5), we see the time constant t, for the transients

Ca
Up+uw*

constant over the entire dataset and obtain 9.74 min. Thus, a 15-min

equals Using this expression, we compute the average time
trailing time corresponds to about 1.7 time constants. Note that the
time constant for a PV module may vary depending on the module
type, mounting construction, and typical wind speeds. Our dataset is
for a rack mounted glass module with a back sheet.
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Scatter plots showing the results of the transient model for (a) trail = O min (Faiman equivalent for filtered data set),
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4 | SUMMARY

In this work, we developed a transient extension of the Faiman model.
Compared to most published transient models for PV applications, our
model is very simple, in line with the Faiman model. Our transient
model only adds one more parameter for the thermal mass. Our tran-
sient extension to the Faiman model is compatible with the Faiman
model in the sense that the models are identical under steady-state
conditions, and the standard Faiman parameters can be directly
obtained by parametrizing the extended Faiman model. We parame-
terized our transient model from a time series of data points to deter-
mine our model parameters. In principle, our parametrization
approach allows the accurate parametrization of both the Faiman
model and its extension without the need to filter data for stable con-
ditions. The Faiman model performs well under fairly constant condi-
tions; however, as expected, we observe a significant reduction in
model accuracy for those time instances where the module tempera-
ture rapidly changes. Our transient extension to the Faiman model
achieves a much better accuracy, especially under dynamic conditions.
We show that we can accurately model the module temperature in a
time series by considering a 15-min thermal history, which corre-

sponds to approximately 1.7 time constants.
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