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Abstract

The development of a transient temperature model of photovoltaic (PV) modules is

presented in this paper. Currently, there are a few steady-state temperature models

targeted at assessing and predicting the PV module temperature. One of the most

commonly used models is the Faiman thermal model. This model is derived from the

modified Hottel-Whillier-Bliss (HWB) model for flat-plate solar-thermal collector

under steady-state conditions and assumes low or no thermal mass in the modules

(i.e., short time constants such that transients are neglected, and steady-state condi-

tions are assumed). The transient extension of the Faiman model we present in this

paper introduces a thermal mass, which provides two advantages. First of all, it

improves the temperature prediction under dynamic conditions. Second, our tran-

sient extension to the Faiman model allows the accurate parametrization of the

Faiman model under dynamic conditions. We present our model and parametrization

method. Furthermore, we applied the model and parametrization method to a 1-year

data set with 5-min resolved outdoor module measurements. We demonstrate a

significant improvement in temperature prediction for the transient model, especially

under dynamic conditions.
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1 | INTRODUCTION

The accurate determination of the operating temperature of PV mod-

ules, especially operated under outdoor conditions, is of key importance

in the field of photovoltaics. This is, among other reasons, due to the

critical dependence of the PV yield on temperature.1–8 Thus, module

temperature prediction attracts considerable research interests in the

recent decade.9–14 Moreover, two important quantities in photovol-

taics: the Climatic Energy Rating of PV modules (CSER) according to

International Electrotechnical Commission (IEC) 61853-3 standard

series15 and the Nominal Module Operating Temperature (NMOT),16,17

require an accurate module temperature prediction. These quantities

depend heavily on the standard Faiman temperature model.

The Faiman model is widely used as it is very simple, using linear-

ized effective heat loss, and for many applications adequate.4,7,15,18

However, the model neglects the thermal mass of the PV module and

thus neglects transients. This makes the Faiman model, like every

other steady-state model, inaccurate under rapidly changing condi-

tions.11,19,20 Furthermore, the inability to accurately describe temper-

ature transients hampers model parametrization as measured data

must be filtered to only select those datapoints where the conditions

were sufficiently stable to assume a steady-state temperature.16
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One way to overcome this limitation of the Faiman model is to

extend it to a transient thermal model. Various transient thermal

models have been developed.11,13,20–26 However, these models are

generally much more complex than the Faiman model, distinguishing

between convective and radiative heat loss and applying nonlinear

heat loss terms.

In this work, we propose a simple transient extension of the Fai-

man model with only one extra parameter for the thermal mass of the

module. The model is compatible with the Faiman model such that

the transient extension may be used to obtain a parametrization for

the original steady-state model. This allows us to parameterize both

the Faiman model as well as our extension thereof, without the usual

data filtering to reject datapoints where the conditions are too

dynamic. We demonstrate that our model provides a significant

improvement in temperature prediction over the Faiman model, in

particular under dynamic conditions.

In Section 2, we briefly present the source and composition of

the dataset used in the model development and the parametrization

approach of the Faiman model. In Section 3, our proposed model and

its parametrization are introduced. We compare our transient model

with the Faiman model for all the datasets and further show the sig-

nificant improvement realized by our model when we focus only on

dynamical conditions. Finally, we summarize the key findings of our

work in Section 4.

2 | DATA SOURCE AND THEORY

2.1 | Data description

The dataset used in this work was collected from a PV test facility in

Widderstall, in the south of Germany. The data set includes the mod-

ule temperature (Tm) and weather data. The weather data consists of

the plane of array (POA) irradiance (G), wind speed (w), and rack ambi-

ent temperature (Ta). The data have a temporal resolution of 5 min,

collected over the year 2015. Exploratory data analysis was con-

ducted on the dataset to filter out missing sensor data. The resulting

data set consists of 78,777 complete measurements.

2.2 | Parametrization of Faiman model

The Faiman model in its original form27 is given by the interdepen-

dence of the module temperature Tm on the ambient temperature Ta

given by

Tm ¼ TaþG= u0þu1wð Þ, ð1Þ

where Tm (K) is the module temperature, Ta (K) is the ambient temper-

ature, G (W/m2) is the irradiance, w is the wind speed, and u0 (W/[m2

K]) is a convective heat loss term, and u1 (Ws/[m3 K]) describes the

wind dependent forced convection.

Usually, the model is parameterized using linear least squares fit

of

u0þu1w¼G= Tm�Tað Þ: ð2Þ

According to the IEC 61853-2 standard,28 prior to the linear fit-

ting to determine the model parameters, a minimum of 10 days high

frequency measurements taken on a suitably clear day is usually

required. Furthermore, the input data are preprocessed by rejecting

certain data points to achieve steady-state conditions as much as pos-

sible. Consequently, the following filtering procedure is followed28:

• Data points with irradiance values below 400 W/m2 are rejected.

• Irradiance values fluctuating more than ±10% from the maximum

to the minimum value within 10 min interval are also rejected.

• Instantaneous windspeed data with a deviation below 0.25 m/s or

wind gusts above +200% from a 5 min running average within

10 min interval are rejected.

• After rejecting gusts and low wind speeds, all data when the 5 min

running average is less than 1 m/s or greater than 8 m/s are also

rejected.

Unfortunately, this data filtering procedure poses a strict reduc-

tion in the number of usable data points for analysis. In fact, other

researchers have clearly noted that only about 0.3% of data points are

usable after filtering.16 Furthermore, wind speed ranges with higher

point density exert more weights in the regression, leading to a lower

regression accuracy.16

As we cannot strictly follow the Faiman parametrization proce-

dure according to the IEC norm due to the low resolution of our data-

set, we parameterize the Faiman model using an equivalent form

given by

Tm�Tað Þ u0þu1wð Þ¼G: ð3Þ

This equivalent form is more robust to numerical errors in case

(Tm � Ta) is small. The parameters determined from this approach as

well as the predicted temperature plots are presented in Figure 1.

Note that by applying linear least squares on Equations (2) and

(3), the parameters u0 and u1 are determined such that the errors in

the right-hand side of the equations are minimized. It should be noted

that this is generally not identical to the solution where the error in

the module temperature is minimized.

2.3 | Transient model development

We propose the following differential equation for a transient temper-

ature model:

Ca
dTm

dt
¼G� u0þu1wð Þ Tm�Tað Þ, ð4Þ
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where Ca (J/[m
2 K]) is the area-specific thermal capacitance; that is, it

is the heat capacity per unit area, and all other parameters are as ear-

lier defined.

Under the assumption that the irradiance, wind, and ambient tem-

perature do not vary, this differential equation has an analytical solu-

tion of the form

Tm tð Þ¼ Tss�Cexp �t u0=Caþu1w=Cað Þ½ �, ð5Þ

where

Tss ¼ TaþG= u0þu1wð Þ, ð6Þ

C¼ Tss�Tm 0ð Þ: ð7Þ

Also, under steady-state conditions, Equation (5) reduces to

Equation (6), with Tm = Tss, where Tss is the module temperature at

steady-state. Note that Equation (6) is the Faiman equation as in

Equation (1), with Tm = Tss. Thus, a parametrization of the Faiman

model is directly obtained from our model parameters.

2.4 | Parametrization approach

We parameterize our transient model from a time series of data points

(Gi, Ta,i, wi, and Tm,i) to determine the parameters, u0, u1, and Ca, by

considering time intervals between consecutive data points. Conse-

quently, we employ the finite difference approach while assuming

constant conditions within an interval [ti, ti + 1]. A good choice for the

constant value would be the first order approximation of the value in

the center of each interval: Xiþ0:5 ¼ XiþXiþ1ð Þ=2, where X is

substituted with one of the quantities G, Ta, w, Tm, and i is the time

series measurement index (i=1 … N), and ti < ti+1 for all i, and N is the

number of measurements in the time series. Hence, we linearize

Equation (4) to obtain Equation (8) as

Giþ0:5� u0þu1wiþ0:5ð Þ Tm,iþ0:5�Ta,iþ0:5ð Þ¼Ca
Tm,iþ1�Tm,i

tiþ1� ti
: ð8Þ

To compute the temperature at a specific time, we consider the

thermal history of the module by trailing back in time. Here, we simply

assume that we have a steady-state condition at t–Δtt minutes, where

Δtt is the trailing time. We numerically integrate Equation (8) up to

the desired time to get the module temperature, Tm(t). The simplified

process flow is as follows:

I. ) At t–Δtt minutes, we assume steady-state conditions, that is,

Tm(t–Δtt) = Tss(t–Δtt),

II. ) We compute the temperature for the next time step (Tm,i + 1),

using

Tm,iþ1 ¼ Tm,iþ Δti=Ca
Giþ0:5� u0þu1wiþ0:5ð Þ Tm,i�Ta,iþ0:5ð Þ½ �: ð9Þ

III. ). The final module temperature at time t is obtained by integrating

N time steps using Equation (9), where

Δtt ¼
XN

i¼0

Δti: ð10Þ

3 | RESULTS AND DISCUSSIONS

3.1 | Faiman model results

The ordinary least squares fitting was done using the equivalent equa-

tion of the Faiman model in Equation (3), for all the dataset, which

yielded the Faiman parameters, u0 and u1 as 29.66 Wm�2 K�1 and

5.64 Wm�3 sK�1, respectively. These values are comparable to those

obtained by other authors in the literature.16,27 The Faiman parame-

ters are subsequently used in Equation (1) to predict the module tem-

perature, and the plots are presented in Figure 1.

Figure 1a shows a scatter density plot for the measured versus

the Faiman predicted module temperature (Tm). The color scale

depicts the density of points in the scatter plot (note the logarithmic

scale). Large density of points especially at low temperatures is rea-

sonably well predicted by the model. However, for these points, the

irradiance is generally low, and thus, the module temperature is close

to the ambient temperature. At higher temperatures, the scatter fans

out a bit. Nevertheless, the plot clearly depicts that even without data

filtering and other extraneous data preprocessing, the Faiman model

works fairly well. The coefficient of determination, R2, and the root-

mean-square error, RMSE, are 0.9610 and 2.19 K, respectively.

(B)(A)

F IGURE 1 Scatter density plots for the predicted temperature
(Tpred) versus the measured temperature (Tmeas). The color of the
scatter points shows the estimated density of scatter points in
logarithmic scale. (a) the Faiman model prediction for the whole
dataset. (b) Model prediction for a filtered dataset where jΔTmj > 2�C,
that is, select only those points where two subsequent temperature
measurements show a large difference.
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We expect the Faiman model to be less accurate under dynamic

conditions. To show this, we filter our dataset by selecting datapoints

where the magnitude of ΔTm for the preceding interval is greater than

2�C (jΔTmj > 2�C); that is, we select those points in the dataset where

the temperature is rapidly changing. The predicted versus the mea-

sured module temperatures for the thus filtered dataset is shown in

Figure 1b. It is clearly seen that during these dynamic moments, the

model is much less accurate with an R2 value of 0.5200 and an RMSE

of 6.72 K, which is more than a factor 3 larger as compared to the

RMSE for the complete dataset. This is seen in the large scatter of

points in Figure 2b with only very few points lying on the

regression line.

3.2 | Transient model results

In the next step, we parameterize the transient model. In principle, we

can use an ordinary least squares (OLS) approach to find the coeffi-

cients Ca, u0, and u1 from Equation (8). Figure 2a shows the measured

(ΔTmeas) and predicted (ΔTpred) temperature difference for subsequent

measurements in the time series (ΔTm = Tm,i + 1 – Tm,i), where the

parameters are obtained with OLS. However, we observe that

the variance of the residuals is not constant across the ΔTmeas.

When non-constant variance of the residuals is observed, it indi-

cates that the variability of the errors is not consistent throughout the

data range (in ΔTmeas). Moreover, this condition represents a violation

of the assumption of homoscedasticity, a critical assumption in linear

regression. Consequently, such a violation can introduce bias into

parameter estimates and lead to incorrect statistical inferences.29–31

This problem arises from a rather unbalanced dataset where the

majority of ΔTm values are close to 0. To overcome this, we apply a

weighted least square (WLS) regression. The weights are obtained by

binning the ΔTm/Δt values into 100 equally spaced bins and set

weights inversely proportional to the number of data points per bin.

The results of the WLS fit on all the dataset are shown in Figure 2b.

From the parametrization procedure in Equation (8), we obtain

the three parameters Ca, u0, and u1, from the weighted least squares

fit as 19.57 kJ m�2 K�1, 26.31 Wm�2 K�1, and 7.93 Wm�3sK�1,

respectively. The results of the Faiman parameters obtained from our

parametrization approach, as well as from the transient model and

(B)(A)

F IGURE 2 Scatter density plots showing the predicted (ΔTpred) versus the measured (ΔTmeas) module temperature difference from the
transient model parametrization fits using (a) OLS and (b) WLS regression. The solid line is the line of best fits or the identity line for which the
modeled and measured ΔTm are equal, and the color of the scatter points indicates the estimated probability density of the scatter points on a
logarithmic scale.

TABLE 1 Values of Faiman parameters derived from equivalent equation, transient model, and published literature.

Faiman parameters Values from an equivalent equation Values from our transient model Values from literature

u0 (Wm�2 K�1) 29.66 26.31 29.27,28 32.016

u1 (Wm�3sK�1) 5.64 7.93 5.60,28 4.516

(B)(A)

F IGURE 3 Scatter density plots
of the predicted temperature (Tpred)
versus the measured temperature
(Tmeas) for the transient model on all
dataset (a) for trail = 0 min (Faiman
equivalent) (b) trail = 15 min.
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how they compare with literature published values, are shown in

Table 1. As compared to the previous direct parametrization of the

Faiman model, we observe the new u0 is slightly smaller (was 29.66

Wm�2 K�1), whereas the new u1 is slightly larger (was 5.64

Wm�3sK�1). In any case, the exact values of these parameters are no

more important than their impact on the annual energy yield for a

specific location.28

First, we compare the Faiman model parameterized from the tran-

sient model coefficients. In Figure 3a, we show the predicted versus

measured module temperature using this alternative parametrization

of the Faiman model. The results are nearly identical to Figure 1a. The

coefficient of determination and root mean square error are also

nearly the same (R2 = 0.9598 and an RMSE = 2.23 K).

The results for the transient model are shown in Figure 3b,

where we use a trailing time of 15 min. Here, we observe a better

temperature prediction using the transient model, as compared to

the Faiman model in Figure 3a. The point cloud gets narrower with

more density of data points, which lie about the regression line. The

model accuracy improves to having an R2 value of 0.9786 and RMSE

value of 1.63 K. Quantitatively, this RMSE value has been noted in

the literature to be comparable to cell-to-cell temperature within

any given module.4,27 Moreover, in terms of power rating of com-

monly available PV modules, such as HIT and c-Si modules with typi-

cal temperature coefficients of about �0.3%/K and �0.5%/K,

respectively, the RMS error would translate to only 0.48% or 0.82%

uncertainty in power.

Next, we evaluate the transient model performance under

dynamic conditions. Figure 4 shows plots of filtered datasets for large

transients, that is, for moments where the absolute module tempera-

ture difference is larger than 2�C (jΔTmj > 2�C).

Figure 4a–c shows the improvement of our transient model from

its steady-state counterpart in Figure 1b. In Figure 4a, we show the

results without trailing data, which produces more or less identical

results as before in Figure 1b, while Figure 4b,c shows results for 5-,

10-, and 15-min trailing data. It is observed that with an increasing

trailing time, the model gets more accurate. Under these dynamic con-

ditions, we can reduce the RMSE from 6.69 to 3.33 K.

Similarly, in Figure 5, we show the development of the coefficient

of determination and the RMSE, as a function of the trailing time.

Figure 5a shows the results for the complete dataset and Figure 5b

for the dynamic conditions only. In both figures, we observe that the

accuracy improves rapidly up to a trailing time of about 15 min. Trail-

ing further in the past, the less the module temperature is correlated

with the current temperature. So if we integrate from a point far in

the past, then we get a better temperature estimate.

From Equation (5), we see the time constant τ, for the transients

equals Ca
u0þu1w

. Using this expression, we compute the average time

constant over the entire dataset and obtain 9.74min. Thus, a 15-min

trailing time corresponds to about 1.7 time constants. Note that the

time constant for a PV module may vary depending on the module

type, mounting construction, and typical wind speeds. Our dataset is

for a rack mounted glass module with a back sheet.

(A) (B)  

(C) (D) 

F IGURE 4 Scatter plots showing the results of the transient model for (a) trail = 0 min (Faiman equivalent for filtered data set),
(b) trail = 5 min, (c) trail = 10 min, and (d) trail = 15 min.
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4 | SUMMARY

In this work, we developed a transient extension of the Faiman model.

Compared to most published transient models for PV applications, our

model is very simple, in line with the Faiman model. Our transient

model only adds one more parameter for the thermal mass. Our tran-

sient extension to the Faiman model is compatible with the Faiman

model in the sense that the models are identical under steady-state

conditions, and the standard Faiman parameters can be directly

obtained by parametrizing the extended Faiman model. We parame-

terized our transient model from a time series of data points to deter-

mine our model parameters. In principle, our parametrization

approach allows the accurate parametrization of both the Faiman

model and its extension without the need to filter data for stable con-

ditions. The Faiman model performs well under fairly constant condi-

tions; however, as expected, we observe a significant reduction in

model accuracy for those time instances where the module tempera-

ture rapidly changes. Our transient extension to the Faiman model

achieves a much better accuracy, especially under dynamic conditions.

We show that we can accurately model the module temperature in a

time series by considering a 15-min thermal history, which corre-

sponds to approximately 1.7 time constants.
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